博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Java常见排序算法之堆排序
阅读量:6716 次
发布时间:2019-06-25

本文共 1977 字,大约阅读时间需要 6 分钟。

在学习算法的过程中,我们难免会接触很多和排序相关的算法。总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的。

从今天开始,我们将要进行基本的排序算法的讲解。Are you ready?Let‘s go~~~

1、排序算法的基本概念的讲解

     时间复杂度:需要排序的的关键字的比较次数和相应的移动的次数。

     空间复杂度:分析需要多少辅助的内存。

     稳定性:如果记录两个关键字的A和B它们的值相等,经过排序后它们的位置没有发生交换,那么我们称这个排序算法是稳定的。

              否则我们称这个排序算法是不稳定的。

   

    排序算法的常见分类:

    1、内部排序(最常见的一种排序方式,不需要借助第三方辅助存储工具)

    2、外部排序(需要借助外部存储来辅助完成相关的排序操作)

        如果参与排序的数据元素非常的多,数据量非常的大,计算机无法把整个排序过程放到内存中进行的话,

        我们必须借助外部存储器如磁盘来完成,这种排序方式,我们称之为外部排序。

        其中外部排序最常见的就是多路归并排序,即将原始文件分解成多个能够一次性装入内存的部分,分别把每一部分调入

        内存完成相应的排序,接下来在对多个有序的外部文件进行多路归并排序。

  

   对于我们绝大多数的程序员而言,我们经常遇到的为内部排序。接下来我们将要对常见的内部排序进行相应的讲解。

    今天要讲解的内部排序为:

    堆排序

  1、堆排序的基本概念的讲解

     堆排序是一个树形选择排序方法,它的特点是:在排序过程中,将L[1...n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树

    中双亲结点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素。

   堆的定义如下:n个关键字序列L[1...n]称为堆,当且仅当该序列满足:

   ①L(i)<=L(2i)且L(i)<=L(2i+1)

   ②L(i)>L(2i)且L(i)>=L(2i+1)(1<=i<=[n/2])

   满足第一种情况的堆称为小根堆(小顶堆),

   满足第二种情况的堆称为大根堆(大顶堆)。

   算法思想:对于构造初始堆,就是一个反复筛选的过程。

   n个结点的完全二叉树,最后一个结点是第【n/2】个结点为根的孩子。

   对第【n/2】个结点为根的子树筛选,使该子树成为堆。

   之后向前依次对各结点(【n/2】-1~1)为根的子树进行筛选,看该结点值是否大于其左右结点的值,

   若不是,将左右结点中较大值与之交换,交换后可能会破坏下一级的堆,于是继续采用上述方法构造

   下一级的堆,直到以该结点的子树构造成堆为止。

   反复利用上述调整堆的方法建堆,直到根节点为止。

  2、堆排序之Java代码实现

 

package com.yonyou.test;/** * 内部排序算法之堆排序 * 默认按照从小到大进行排序操作 * @author 小浩 * @创建日期 2015-3-24 */public class Test{	public static void main(String[] args) {   //需要进行排序的数组	int[] array=new int[]{8,3,2,1,7,4,6,5};	 //输出原数组的内容    printResult(array);	//进行堆排序操作	for(int i=array.length-1;i>0;i--)	{         //进行n-1次建大顶堆,每次建堆,都把最小的值放到根位置上面		 //同时在每次建堆的过程中选出最大的值作为根		//创建大顶堆的过程也是创建完全二叉树的过程		buildMaxHeap(array,i);	}		//输出排序后的相关结果	printResult(array);	}			/**	 * 建立大顶堆的过程	 * @param array	 * @param i	 */	private static void buildMaxHeap(int[] array, int i) {		//从叶子节点的第一个父节点开始循环		for(int j=(i-1)/2;j>=0;j--)		{   			//最后一个节点并且这棵树只有左子树			if((2*j+1==i)&&(i%2!=0))			{				if(array[j]

  3.堆排序的效率分析

    时间复杂度:假设有n个数据,数据交换的次数最多为n-1次,但程序的总体的比较次数较多。所以综合考虑有直接选择排序的时间复杂度为O(n2)

   (n的平方)。所以当记录占用字节数较多时,通常比直接插入排序的执行速度快些。

    空间复杂度:直接选择排序的空间复杂度很好,它只需要一个附加单元用于数据交换,所以其空间复杂度为O(1)。

    稳定性:由于在直接选择排序中存在着不相邻元素之间的互换,因此,直接选择排序是一种不稳定的排序方法。

 

   好吧,直接选择排序的讲解就先到这里了。

  

 

转载地址:http://rhkmo.baihongyu.com/

你可能感兴趣的文章
angular4微信公众号开发遇到的问题
查看>>
React写个GitHub项目管理面板
查看>>
Redis 集群分片&分布式锁的使用
查看>>
String类型
查看>>
一致性 Hash 算法的实际应用
查看>>
个推微服务网关架构实践
查看>>
自定义标签的编码
查看>>
用一张图总结web缓存策略
查看>>
re模块与正则表达式
查看>>
第十天-《企业应用架构模式》-数据源架构模式
查看>>
如何快速学习Java?
查看>>
element-ui上传下载excel(超详细der)
查看>>
Python 进阶之路 (七) 隐藏的神奇宝藏:探秘Collections
查看>>
Webpack4 高手之路 第一天
查看>>
前端npm 安装包,精选大全集合
查看>>
Javascript实现冒泡排序与快速排序以及对快速排序的性能优化
查看>>
web认证机制
查看>>
Java多线程-Callable和Future
查看>>
MP3转换AAC格式哪个音频转换器好
查看>>
Terraform使用案例
查看>>